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Abstract. Recent work on states bound by a central potential whose Laplacian is positive 
is extended to cover a wider class of potentials for which energy level ordering theorems 
can be proved. This class includes power law potentials in particular. Constraints on the 
moments of the radial distance are improved and similarly for the kinetic energy. These 
constraints are shown to provide tight bounds on the energies of ground states for power 
law potentials, and on their variation with angular momentum. They are also used to 
bound the position of the maximum of the wavefunction for these states. 

1. Introduction 

In a recent work one of us (Common 1985) studied properties of states bound by a 
central potential whose Laplacian is positive. Although this was motivated by heavy 
quark spectroscopy, since both I,/I and y systems are well described by a non-relativistic 
treatment, it has applications in other areas of physics as discussed by Baumgartner 
er a1 0984).  

The above study used a result which is crucial to the proof of energy level ordering 
theorems (Baumgartner et a1 1984). This is that for a central potential V(r) whose 
Laplacian F2(d /dr ) ( r2  d V/dr) > 0 for all r > 0, 

where uo,,(r) is the reduced wavefunction for the ground state of angular momentum 
1. The converse of (1.1) holds for potentials for which there exists an ro such that 
r-*(d/dr)(r2 dV/dr )  < O  for r < r,, and dV/dr  < 0 for r 3 ro. The level ordering result 
is that, if E ( n ,  I )  is the energy of the level with angular momentum I and n is the 
number of nodes of the wavefunction, then 

E ( n , / ) S E ( n - l , I + l )  (1.2) 
with the upper (lower) inequality corresponding to the case of positive (negative) 
Laplacian. 

These results have been generalised recently by Baumgartner et a1 (1985) to other 
classes of potential by transforming to the variable z = r,. For example, for a positive 
potential such that 

d2 V 1 d V  V(r) > D, V( r) = -+ (5 - 3 a ) -  -+ 2( 1 - a)(2 - a)- 
dr2 r d r  r2 (1 .3)  
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for all r > 0 and some 2 > a > 1, then 

E( n, I)  > E( n - 1, I +  a). (1.4) 
The condition (1.3) is chosen so that the Laplacian of the ‘potential’ of the Schrodinger 
equation in the ‘transformed’ variable z has positive Laplacian. The ground-state 
wavefunction in the transformed variable then satisfies a condition corresponding to 
(1.1) and inequality (1.4) follows. 

It is the purpose of this work to extend the results of Common (1985) to classes 
of potentials considered by Baumgartner et a1 (1985). In 9 2, we describe in more 
detail the transformation from the energy eigenvalue equation for V(r) to the corre- 
sponding equation in the z variable. We then derive a relation between the moments 
of r and the moments of z in the transformed system and similarly for the corresponding 
kinetic energies. In 9 3, we generalise the moment inequalities given previously and 
also the corresponding inequalities on the kinetic energy. We apply these results in 
9 4  to obtain tight bounds on the variation of energy with angular momentum for 
power law potentials, while in the final section we derive improved bounds on the 
position of the unique maximum of the ground-state wavefunction u,,!(r) and also 
draw some conclusions. 

2. The transformed system 

The reduced wave uJr) corresponding to energy E(n,  I)  satisfies the equation 

When written in terms of the transformed variable z = ra, it becomes (Baumgartner et 
a1 1985) 

where 

U (  z )  = ( V (  r )  - E (  n, I)) / (  a2~2-2’n) (2.3a) 

A ( 2 1 -  + 1)/2a wn,A(z)  a-1 ) 1/2 u n , / ( r ) *  (2.3b) 
The ‘moments’ of the original and transformed systems are then related in the 

following manner: 

d , d r )  d r  k=0, 1,2 , . . . .  loffi r2n-2cka 
w : , ~ ( z ) z ~  dz = a 2  

Similarly from ( 2 . 3 ~ )  

loffi zdUO w:,*( z) dz 
2 dz 

= L l f f ( 2 - 2 a ) ( V ( r ) - E ( n ,  2 a  I))u:,,(r)dr+- 2 a  lom r-u;,/(r)dr Y 
( 1 - a )  1 

T n , /  +- T n , /  = Tn,/ - - -- 
a a 
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where we have used the virial theorem for T,,,, the kinetic energy of the state of energy 
E ( n ,  1 )  and taken u, ,Jr)  to be normalised to unity. The kinetic energy U,,A of the 
'transformed' system is also given by the virial theorem to be 

where it should be noted from (2.4) with k = 0 that, in general, w,,(z) will not be 
normalised to unity. Combining (2.5) with (2.6),  

3. Inequalities 

Baumgartner et al (1985) defined classes of potentials V ( r )  for which the Laplacian 
of U(z) had a definite sign and hence a condition on w0,/(z) corresponding to (1.1) 
held. We form these classes into two sets as follows. 

Set A. For all r > 0 one of the following conditions holds: 
(i)  D , V ( r ) > O ,  1 < a < 2 ,  V ( r ) > O ,  
(ii) D , V ( r ) > O ,  a < l ,  V ( r ) < O ,  
(iii) [ r2 d2/dr2 + (3 - 2 a )  d l d r ]  V (  r )  > 0, 1 < a < 2, d V/dr > 0, 

Notice that, in case (iii), if V belongs to A for a = a. it also belongs to A for any 
where D, V (  r )  is defined in (1.3). 

a <ao. 

of 

Set B. For all r > 0 one of the following conditions holds: 
(i)  D U V ( r ) < O , a > 2 o r < 1 ,  V ( r ) > O ,  
(ii) D a V ( r ) < 0 , 1 < a < 2 ,  V ( r ) < O ,  
(iii) [ r2 d2/dr2 + (3 - 2a)  d/dr]  V (  r )  < 0, a > 2 .  
Note that a given potential can belong to both set A and set B for different choices 
a. For instance, in the special case of power law potentials V,( r )  = E (  v)r": 
(a) v > 2 ,  V, belongs to A with a = 2 and to B with a = f( v + 2) ,  
(b) 2 > v > 0, V, belongs to B with a = 2 and to A with a = f( v + 2 ) ,  
(c) O> v >  -1, V, belongs to A with a = 1 and to B with a = v + 2 ,  
(d) - 1  > v, V, belongs to A with a = v +  2 and to B with a = 1. 
It was shown by Baumgartner et a1 (1985) that 

(3.1) 

where the upper (lower) inequality holds for potentials in set A(B). Using the methods 
of Common (1985), the inequalities (3.1) may be used to prove the following moment 
inequalities for all A > 0. If V ( r )  belongs to set A, 

(3 .2)  

where { z ' } ~  = J: z'w&(z) dz and n > k are any pair of real numbers such that all the 
integrals concerned exist. When V ( r )  belongs to set B the inequality is reversed. 

Transforming these results back to the original variable we obtain the following 
theorem. 

( 2 A  + 2 +  k){Zk-'},{Z"}A 6 (2A + 2 +  n){zk}A{z"-'}A 
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Theorem. If V ( r )  belongs to set (g) then for all 1 2 0 ,  n >  k for which the integrals 
concerned exist, 

)O,I (21+ 1 + a  + ka) ( r2 (a - l )+na  )o,l( 
- 1  ) + ( k -  I ) a  

(3.3) 5 (21+ 1 + a + n a ) ( r 2 ( a - l ) + k ”  
Z ( a - l ) + ( n - l ) a  

)0,1(r )O, I  

where 

( r k ) o , r  u & ( r ) r k  dr. lo* 
For case A these bounds complement the usual ‘moment’ inequalities, 

)o,r. (3.4) ) o , l ( r 2 ( ~ - l ) + ( k - 1 ) ~ ) o , l  ( 2 ( a - l ) + k a )  ( r 2 ( a - l ) + ( n - l ) a  
( r2(a - I ) + n a  0.1 

It can also be checked that those corresponding to a > 1 are more constraining than 
those for Q = 1. For case B the inequalities (3.3) improve on (3.4). These inequalities 
will be used in 0 5. 

We now consider the kinetic energies. Using again the methods of Common (1985) 
the inequality (3.1) may be used to prove that if V ( r )  is in set (t) then 

+ l ) ( A  +$){z-2}0,A/{1}0,A. (3.5) 
The proof is based on the following integration by parts: 

* w’(z) w’(z) ’ 
0 w(z) 2 w(z) 

lom ( w ’( z))2 dz = (-) w ( z ) w ’( z) dz = - 1: (-) w2(  z) dz 

followed by the use of inequality (1 .1) .  Transforming back to the original variables 
and using (2.4) with k = -2 we obtain the following. 

Theorem. If V ( r )  belongs to set (g), then 

It is important to remember that the moment inequalities (3.3) and the bounds (4.2) 
on the kinetic energy have been proved for the ground states of given angular momen- 
tum. However, the lower bounds in the latter case can be extended to excited states 
as shown by the following result. 

Corollary. For potentials belonging to set A, the lower bounds (3.6) can be extended 
to excited states, i.e. 

n,l=0,  1,2,. . . . 

The proof of this corollary is given in appendix 1. 

4. Energy bounds 

(3.6a) 

For power law potentials V ( r )  = E (  v)r”, we can use (3.6) to derive the following set 
of bounds: 

(a) v > 2  

( 1  ++)(I + W 2 ) 0 , l  < T0,I < (1+4)[1+6( v + 4)l(r-z)o.l (4.la) 
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(b) O<v<2 

(c) - l < v < O  

(d) - 2 < ~ < - 1  

425 1 

(4.lb) 

( 4 . 1 ~ )  

(4.ld) 

These are obtained by choosing, for a given v, values of a = a, or a2 so that V(r) 
belongs to set A or B, respectively, and which give optimal bounds. For example, 
when v > 2, one takes a, = 2 and a2 = ( v  + 2)/2 as stated earlier. 

The inequalities (4.1) give tight bounds on the variation of E ( 0 ,  I )  with I since 
from the virial theorem, for the above power law potentials, 

and from the Feynman-Hellmann theorem (Feynman 1979, Hellmann 1937) 

aE(n,  /)/ai = (21+ 1)(r-2) , , l .  

For example, from (4.1 b )  we find for 0 < v < 2 that 

[I+(v+4)/4]aE(O, I ) / a l s  [ 2 ~ / ( 2 +  v)]E(O, 1)s (1+;)aE(O, 1)/aZ. 

Integrating 

[(L+;)/(1+$)]2”””+2)-= - E(O, L)/E(O, I )  

s{ [L+(v+4) /4] / [ l+(v+4) /4]}2”””+2’  L >  1. 

To show that these are significant bounds, we consider the linear potential V(r) = r 
for which the lowest energy levels have been evaluated numerically (Antippa er a1 
1978). These numerical values have been used to calculate E ( 0 ,  L)/E(O, I )  for I = 0 
and L = 1 to 6 and compared in table 1 with the bounds given by (4.5). It will be seen 
that for angular momentum as high as L = 6, the bounds (4.5) allow us to determine 
E ( 0 ,  L) from E(0,O) to within an error of 5%. 

Table 1. The bounds to E ( 0 ,  L ) / E ( O ,  I )  for 1=0 compared with computed values. 

L Lower bound Numerical value Upper bound 

1 1.406 1.438 1.480 
2 1.759 1.817 1.891 
3 2.080 2.160 2.261 
4 2.378 2.478 2.603 
5 2.658 2.777 2.924 
6 2.924 3.060 3.228 
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One can also use (4.5) to obtain absolute bounds by letting L tend to infinity and 
using the fact that 

In this way one obtains 
(a) O s v d 2 :  

E ( 0 ,  I )  s [( v+2)/  v]( v/2)2/(”+2)( I + ; ) 2 ” l ( ” + 2 )  

E ( 0 ,  I )  3 [( v+2)/  v]( ~ / 2 ) ~ / ‘ ” + ~ ) [ 1 +  ( v  +4)/4]2”/‘”+23. 

E ( 0 ,  I )  d [( v+2)/ v]( ~ / 2 ) ~ ’ ( ” + ~ ) [ 1 +  ( v  +4)/4]2”’(v+2) 

(4.7) 

(4.8) 

(4.9) 

(b) 2 d v < ~ 0 :  

E(0,  I )  3 [( v +  2)/ v]( y / 2 ) 2 / ( v + 2 ) ( I + t ) 2 u l ( ” + 2 ) .  (4.10) 

The most unfavourable case of these bounds are when I = 0 and we then obtain 
(i) for a linear potential ( v  = l ) ,  

2.193 01 d E(0 ,O)  = 2.338 11 d 2.4764 

(ii)  for a quartic potential ( v  = 4), 

3 .24s E(O,0)-3.8<4.77. 

More refined upper bounds can be obtained, however, using a variational approach 
by taking U = r m  exp(-Ar2) as a trial function with m, A variational parameters. One 
gets, for v > 2, 

(4.11) E ( 0 ,  I )  s [( v + 2)/ v]( Y/2)2/(”+2)[ I +f+;( v + 2)1/2]2”’”+2. 

For the quartic potential this gives 

E(O,O)a3.91 

which is to be compared with the previous bound above. 
For the case 0 < v < 2, (4.1 1) has to be replaced by a more complicated expression. 

However, for v = 1, a bound which is significant for I small is obtained by multiplying 
(4.11) by ( ~ / 3 ) ’ / ~  and then 

E(0,O) 2.38. 

These results can be used to prove ‘concavity’ properties such as 

2E(O, I) > E ( 0 ,  I + 1) + E ( 0 ,  I - 1) 

for potentials V = ra, 0 s CY s 2. 

5. The maximum of the wavefunction and conclusions 

In this section we use the moment inequalities (3.3) to improve the bounds on the 
position of the peak of the reduced ground-state wavefunctions obtained previously. 
The reduced ground-state wavefunction uO,,( r )  is non-zero for r > 0 and (if assumed 
positive) has a single maximum at r = r M I ,  say. Previously we obtained upper and 
lower bounds to rMI which are proportional to ( r ) , , ] .  They were not particularly precise 
but the ratio of the upper and lower bounds tended to as I -+ 00, so for large I they 
were quite reasonable. 

An improvement on these results is given by the following theorem. 
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Theorem. If V ( r )  belongs to set A defined in 0 3 for a given a > 1, then 

(5.1) 

when 1 > (3 - a)/2 in the case of the left-hand inequality and when 1 > (a - 2)/2 for 
the right-hand inequality. 

The proof is given in appendix 2 and (5.1) has the nice property that, as I - c o ,  the 
ratio of the upper and lower bounds tends to unity so that in this limit rMI + ( r ) o , l .  The 
bounds also become tighter as a is increased from unity (in fact, an optimum value 
for a can be found), and they are in accord with the fact (Common 1985) that the 
relative width of the peak of uo,f( r )  tends to zero as 1 +CO. 

In this work we have generalised the results of one of us (Common 1985) to 
properties of states bound by potentials belonging to the two sets defined in § 3. Some 
of the constraints which have been obtained are very tight as are, for example, the 
energy bounds given in 0 4 in the case of the linear potential. 
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Appendix 1 

We prove here the inequality (3.6~1) for excited states. Let z = zi and z = zi+' be two 
adjacent zeros of the wavefunction W , , ~ ( Z )  corresponding to energy E ( n ,  1 )  of the 
original system. Then w,,J z )  is the wavefunction for the ground state corresponding 
to the potential 

C ( Z )  = u ( z ) e ( z  - z i )e (z i+ l  - z ) .  (Al . l )  

For fixed z a 0 ,  

C ( z )  = lim C k ( Z )  
k-tcc 

where 

(Al.2) 

(A1.3) 

If U (  z )  has positive Laplacian so do all the C k (  z )  for k > 1. For each k the ground-state 
wavefunction satisfies an inequality corresponding to (1.1) and for zi < z < zi+', these 
wavefunctions will tend to w " , ~  ( z )  which is the ground-state wavefunction for fi( z )  
as stated above. Therefore, for zi < z < z i + ] ,  

(A1.4) 
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Using the methods of Common (1985) it then follows that 

(A IS)  

Repeating the argument for all the intervals between adjacent zeros of w , , ( z )  we 
obtain the inequality 

which is sufficient to prove (3.6a) since 

Appendix 2 

Since u&(r)  is positive (negative) for r less (greater) than rMI 

so long as s is such that all the integrals concerned exist. Therefore 

Now 

(A1.6) 

(A1.7) 

(A2.1) 

(A2.3) 

from (3.3) with - s  = 2(a - 1) + ka, a = 2(a - 1) + na. Combining (A2.2) for s > 1 and 
(A2.3) 

( S  - 1)(21+3 - a - S )  

(s+a-1)(21+3) IMI > ( (A2.4) 

since 

The best bound is obtained by taking the value s which gives the maximum of the 
RHS of (A2.4). 

lom ~ & ( r ) [ r ~ + ~ ( s  + a + 1) - rSrK, (s+  l ) ]  dr 

The LHS of (5.1) is obtained by considering 

= - 2  JOm uo,,(r)ub,,(r)(r'+u+'- rS+lr&,) d r  > 0.  (A2.5) 
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Therefore 

Using (3.3) with s = a - 2 + n a  andO=2(a- l )+ka  

( r  )o.i< (1)0,,(21+S+3) 
s+u 

W ) O . I  (r-")o,,(21+3 - Q )  

(r-u)o,I 3 ((r)o,l)-u Q > 1  

and it follows from the inequality 

that 

(s + Q + 1)(21+ s + 3 )  
,MI<(  ( S  + 1)(21- Q + 3 )  

which again can be optimised with respect to s. 
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